Meniscal shear stress for punching.
نویسندگان
چکیده
AIM Experimental determination of the shear stress for punching meniscal tissue. METHODS Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). RESULTS The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). CONCLUSIONS The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.
منابع مشابه
Numerical Simulation of Punching Shear of Flat Plates with Low Reinforcement
Abstract—Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. In the present study, a 3D finite element model of a flat plate with low reinforcement ratio and without any transverse reinforcement has been developed. Punching shear stress and the deflection data wer...
متن کاملEstimation of Punching Shear Capacity of Concrete Slabs Using Data Mining Techniques
Punching shear capacity is a key factor for governing the collapsed form of slabs. This fragile failure that occurs at the slab-column connection is called punching shear failure and has been of concern for the engineers. The most common practice in evaluating the punching strength of the concrete slabs is to use the empirical expressions available in different building design codes. The estima...
متن کاملImproving the Punching Shear Strength of RC Slabs by FRP and Steel Sheets
This paper deals with the modeling of punching shear failure in reinforced concrete slabs using nonlinear finite element analysis. The 3D finite element analyses (FEA) were performed with the appropriate modeling of element size and mesh, and the constitutive modeling of concrete. The FE numerical models are validated by comparing with the experimental results obtained from tested specimens and...
متن کاملStrength of Footing with Punching Shear Preventers
The punching shear failure often governs the strength of the footing-to-column connection. The punching shear failure is an undesirable failure mode, since it results in a brittle failure of the footing. In this study, a new method to increase the strength and ductility of the footing was proposed by inserting the punching shear preventers (PSPs) into the footing. The validation and effectivene...
متن کاملDynamic loading enhances integrative meniscal repair in the presence of interleukin-1.
OBJECTIVE Meniscal tears are a common knee injury and increased levels of interleukin-1 (IL-1) have been measured in injured and degenerated joints. Studies have shown that IL-1 decreases the shear strength, cell accumulation, and tissue formation in meniscal repair interfaces. While mechanical stress and IL-1 modulate meniscal biosynthesis and degradation, the effects of dynamic loading on men...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied biomaterials & biomechanics : JABB
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2009